Attribute based Encryption: Traitor Tracing, Revocation and Fully Security on Prime Order Groups

نویسندگان

  • Xiaoyi Li
  • Kaitai Liang
  • Zhen Liu
  • Duncan S. Wong
چکیده

A Ciphertext-Policy Attribute-Based Encryption (CP-ABE) allows users to specify the access policies without having to know the identities of users. In this paper, we contribute by proposing an ABE scheme which enables revoking corrupted users. Given a key-like blackbox, our system can identify at least one of the users whose key must have been used to construct the blackbox and can revoke the key from the system. This paper extends the work of Liu and Wong to achieve traitor revocability. We construct an Augmented Revocable CP-ABE (AugR-CP-ABE) scheme, and describe its security by message-hiding and index-hiding games. Then we prove that an AugR-CP-ABE scheme with message-hiding and indexhiding properties can be transferred to a secure Revocable CP-ABE with fully collusion-resistant blackbox traceability. In the proof for index-hiding, we divide the adversary’s behaviors in two ways and build direct reductions that use adversary to solve the D3DH problem. Our scheme achieves the sub-linear overhead of O( √ N), where N is the number of users in the system. This scheme is highly expressive and can take any monotonic access structures as ciphertext policies.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Practical Attribute-Based Encryption: Traitor Tracing, Revocation and Large Universe

In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), a user’s decryption key is associated with attributes which in general are not related to the user’s identity, and the same set of attributes could be shared between multiple users. From the decryption key, if the user created a decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox. Hence in p...

متن کامل

Converting Pairing-Based Cryptosystems from Composite-Order Groups to Prime-Order Groups

We develop an abstract framework that encompasses the key properties of bilinear groups of composite order that are required to construct secure pairing-based cryptosystems, and we show how to use prime-order elliptic curve groups to construct bilinear groups with the same properties. In particular, we define a generalized version of the subgroup decision problem and give explicit constructions...

متن کامل

Codes Based Tracing and Revoking Scheme with Constant Ciphertext

In broadcast encryption system certain users may leak their decryption keys to build pirate decoders, so traitor tracing is quite necessary. There exist many codes based traitor tracing schemes. As pointed out by Billet and Phan in ICITS 2008, these schemes lack revocation ability. The ability of revocation can disable identified malicious users and users who fail to fulfill the payments, so th...

متن کامل

A Public-Key Traitor Tracing Scheme with Revocation Using Dynamic Shares

We proposed a new public-key traitor tracing scheme with revocation capability using the dynamic share and entity revocation techniques. The enabling block of our scheme is independent of the number of subscribers, but dependent on the collusion and revocation thresholds. Each receiver holds one decryption key only. Our traitor tracing algorithm works in a black-box way and is conceptually simp...

متن کامل

Traceable CP-ABE on Prime Order Groups: Fully Secure and Fully Collusion-Resistant Blackbox Traceable

In Ciphertext-Policy Attribute-Based Encryption (CP-ABE), access policies associated with the ciphertexts are generally role-based and the attributes satisfying the policies are generally shared by multiple users. If a malicious user, with his attributes shared with multiple other users, created a decryption blackbox for sale, this malicious user could be difficult to identify from the blackbox...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IACR Cryptology ePrint Archive

دوره 2016  شماره 

صفحات  -

تاریخ انتشار 2016